1.  | 
                     Given the function f (x) = 5x + 4, find f (2m).  
                       
                      Solution: Substitute 2m into the function in place of x.        f (2m) = 5(2m) + 4 = 10m + 4. 
                      Using parentheses will avoid problems.
                       
                      Notice that the answer is an algebraic expression, not a numeric value. 
                        | 
                   
                   
                     2.  | 
                     
                       Given f (x) = 3x2 + 2x - 3, find f (2a - 5).
                        
                        
                       Solution:  Parentheses are a MUST is this problem!  
                         Be careful - more algebra work is needed here. 
                         f (2a - 5) = 3(2a - 5)2 + 2(2a - 5) - 3 
             = 3(4a2 - 20a + 25) + 4a  - 10 - 3 
              = 12a2 - 60a + 75 + 4a - 10 - 3 
              = 
    12a2 - 56a + 62 
                       | 
                   
                   
                     3.  | 
                     Given  g ( a) = 9 -  a2 and  h ( a) =   a - 3, express:
                        
                           
                             | a) g (a) + h (a) | 
                             b) g (a) - h (a) | 
                            
                           
                             | c) g (a) • h (a) | 
                             d)  , g(a) ≠ 0 | 
                            
                        
                       
                                              Solution: 
                       
                       
                         
                           a) g (a) + h (a) = (9 - a2) + (a - 3) 
                             = -a2 + a + 6 | 
                           b) g (a) - h (a) = (9 - a2) - (a - 3) 
= -a2 - a + 12 | 
                          
                         
                           c) g (a) • h (a) = (9 -  a2) • (a - 3) 
= -a3 + 3a2 + 9a - 27 | 
                           d)   
                            a ≠ 3; a ≠ -3  | 
                          
                        
                      | 
                   
                   
                     4.  | 
                     
                       Given   , express   .
                       
                       
                        Solution: Warm up your algebraic fraction skills!  
                          
                        | 
                   
                   
                     5.  | 
                     Given f (x) = x2 - x - 4. Find f (x + h). 
                        
                       Solution: Be careful to replace the x with (x + h). Use parentheses!!!! 
                        
                       
                       
                         (x+h)2 - (x+h) - 4 
                            x2 + 2xh + h2 - x - h - 4 
                           | 
                           | 
                        
                      
                      | 
                   
                   
                     6.  | 
                     Given g(x) = x2 + 1 and h(x) = 5 - x.  Express 3•g(5 - x) - 2•h(x2)
                          
                      
                     Solution: Remember to use parentheses! 
                       3g(5 - x) - 2h(x2) = 3((5 - x)2 + 1) - 2(5 - x2) = 3(x2 - 10x + 25 + 1) - 2(5 - x2)
                        
                     = 3x2 - 30x + 78 - 10 + 2x2 = 5x2 - 30x + 68  | 
                   
                   
                     7.  | 
                        
                      Solution: FYI: This new expression is called the "difference quotient" or  average rate of change. 
                       
                       
                      
  |